Soft proofing helps you see how your image will look on paper. The first version usually looks horrible. Here’s how to make the proof look the way you want it to.

How to edit a soft proof

With good ICC profiles for your display and printer, and proper viewing conditions, soft proofing can yield a better than 90-percent match between the onscreen image and the printed version—an emissive display and reflective print will never match perfectly.

<table>
<thead>
<tr>
<th>Customize Proof Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom Proof Condition: Custom</td>
</tr>
<tr>
<td>Device to Simulate: ARs3800ArchivalMatt1728lsis</td>
</tr>
<tr>
<td>Rendering Intent: Relative Colorimetric</td>
</tr>
<tr>
<td>Display Options (On-Screen):</td>
</tr>
<tr>
<td>- Simulate Paper Color</td>
</tr>
<tr>
<td>- Simulate Black Ink</td>
</tr>
</tbody>
</table>

Figure 1: The Customize Proof Conditions dialog is configured for matte paper on an Epson Stylus Pro 3800 printer using a relative colorimetric intent with Simulate Paper Color on. You can save this as a custom setting for future use.

The goal is to come as close as possible, which takes some output-specific image editing based on its appearance with and without the soft proof function turned on.

For the best results, your ICC profiles should accurately define the condition of both your display and your printer, and appropriate and controllable print viewing conditions near the display. The luminance and white point of the viewing conditions and display must also be correctly defined when you build the profiles. If you’re not familiar with soft proofing, use the links to my previous columns listed at the end of the article.

Let’s begin with a print-ready image. You’ve made all the tone and color adjustments for ideal color reproduction based on the image’s working space. This is a master image that you can use for output to any number of devices, whenever you need to. Now mentally draw a line to separate the master image from all output-specific edits, including sharpening.

Now open the master image and make a duplicate (Image > Duplicate). Name it Before View. Arrange the two documents side by side, filling as much of the display as you can while retaining access to your Photoshop tools. Place the master image to the right of Before View, which you’ll eventually discard. You’ll make your edits on the master.

Select View > Proof Setup > Custom... to bring up the dialog in Figure 1. Select the output ICC profile for the printer and paper you’re using. Now toggle the rendering intent menu between Perceptual and Relative Colorimetric, and select the one that gives the image the color appearance you prefer.

Select the Simulate Paper Color checkbox and behold a rather ugly preview. You can call this checkbox “the make my image look like crap button,” but it gives you a fair more accurate onscreen preview of the printed version with its contrast ratio of paper and ink. Let your

Figure 2: Left, the original image with no soft proof. Center, the same image with the custom proof setup from Figure 1 turned on. Right, the image with the edits from Figure 3; it’s hardly identical to the original, but it’s much better than the center image.
eyes adjust for a few seconds, and acknowledge that sometimes reality sucks. That’s why we have Photoshop in the first place. Our goal is to edit the soft proof simulation of the image until it looks closer to the image on the left. Remember, you’ll never get an exact match.

Make all of the edits on adjustment layers, starting with the curves (Layer > New Adjustment Layer > Curves...). I can usually counteract some of the effects of the paper simulation with a slight curve adjustment in the upper 3/4 tone. Make other curve edits as appropriate for the particular image. I can’t get the appearance of the original, but I can make improvements (Figure 2).

Now make a Hue/Saturation adjustment layer. A small global saturation increase, about +3 to +8, helps; I know I’m fighting an often massive difference in color gamut among the working space, display and printer. With some colors and tones, no amount of work will get us back to the original appearance.

The selective colors in Hue/Saturation can also be useful. Often, a blue sky appears slightly cyan or magenta in the soft proof. I correct this by making a separate Hue/Saturation adjustment layer, selecting a color range from the pull down menu (Blue, not the Master), and moving the hue slider a few degrees one way or the other. You’ll see why it’s wise to keep each edit on a separate, labeled layer, as in Figure 3.

Place all the adjustment layers in a Layer Group (click on the folder icon in the Layers palette and drag the adjustment layers onto the new group folder). Give this group the same name as the profile and ren-
With good ICC profiles for your display and printer, and proper viewing conditions, soft proofing can yield a better than 90-percent match between the onscreen image and the printed version.

To achieve this, as in Figure 3, you'll need to follow these steps:

1. **Prepare your image:** Start by preparing your image. This involves creating a duplicate layer to keep the original image intact. You can then apply any necessary adjustments and edits to this duplicate layer without affecting the original. This way, you can work on your image without worrying about losing any important information.

2. **Export and proof:** Once your image is ready, you can export it to a printer's profile. This will allow you to view your image as it will look when printed on your specific printer. You can use your printer's software or a third-party proofing tool to do this.

3. **Adjust your image:** After exporting and proofing your image, you can then make any necessary adjustments to improve the color and contrast. This might include adjusting brightness, contrast, or color balance. You can also apply any necessary corrections to compensate for differences between the display and the printer.

4. **Print your image:** Once you are satisfied with the proof, you can then print your image. This will give you an accurate representation of how your image will look when printed.

By following these steps, you can achieve a high level of accuracy in your soft proofing process, ensuring that your final image is as close as possible to what it will look like when printed. This will save you time and money in the long run, as you won't have to go back and make changes after the fact.